{ "id": "1611.09598", "version": "v1", "published": "2016-11-29T12:34:53.000Z", "updated": "2016-11-29T12:34:53.000Z", "title": "On the denseness of the set of scattering amplitudes", "authors": [ "A. G. Ramm" ], "categories": [ "math-ph", "math.MP" ], "abstract": "It is proved that the set of scattering amplitudes $\\{A(\\beta, \\alpha, k)\\}_{\\forall \\alpha \\in S^2}$, known for all $\\beta\\in S^2$, where $S^2$ is the unit sphere in $\\mathbb{R}^3$, $k>0$ is fixed, $k^2$ is not a Dirichlet eigenvalue of the Laplacian in $D$, is dense in $L^2(S^2)$. Here $A(\\beta, \\alpha, k)$ is the scattering amplitude corresponding to an obstacle $D$, where $D\\subset \\mathbb{R}^3$ is a bounded domain with a boundary $S$. The boundary condition on $S$ is the Dirichlet condition.", "revisions": [ { "version": "v1", "updated": "2016-11-29T12:34:53.000Z" } ], "analyses": { "subjects": [ "35R30", "35J05" ], "keywords": [ "scattering amplitude", "boundary condition", "dirichlet eigenvalue", "dirichlet condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }