{ "id": "1611.09281", "version": "v1", "published": "2016-11-28T18:46:40.000Z", "updated": "2016-11-28T18:46:40.000Z", "title": "Irreducibility of the set of cubic polynomials with one periodic critical point", "authors": [ "Matthieu Arfeux", "Jan Kiwi" ], "comment": "17 pages, 4 figures", "categories": [ "math.DS" ], "abstract": "The space of monic centered cubic polynomials with marked critical points is isomorphic to C^2. For each n>0, the locus Sn formed by all polynomials with a specified critical point periodic of exact period n forms an affine algebraic set. We prove that Sn is irreducible, thus giving an affirmative answer to a question posed by Milnor.", "revisions": [ { "version": "v1", "updated": "2016-11-28T18:46:40.000Z" } ], "analyses": { "subjects": [ "37F10", "37F20", "37F30", "14H10" ], "keywords": [ "periodic critical point", "irreducibility", "monic centered cubic polynomials", "affine algebraic set", "locus sn" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }