{ "id": "1611.08969", "version": "v1", "published": "2016-11-28T03:13:21.000Z", "updated": "2016-11-28T03:13:21.000Z", "title": "Counting Eta-Quotients of Prime Level", "authors": [ "Allison Arnold-Roksandich", "Kevin James", "Rodney Keaton" ], "comment": "13 pages, 3 tables, REU results", "categories": [ "math.NT" ], "abstract": "It is known that all modular forms on SL_2(Z) can be expressed as a rational function in eta(z), eta(2z) and eta(4z). By utilizing known theorems, and calculating the order of vanishing, we can compute the eta-quotients for a given level. Using this count, knowing how many eta-quotients are linearly independent and using the dimension formula, we can figure out a subspace spanned by the eta-quotients. In this paper, we primarily focus on the case where N=p a prime.", "revisions": [ { "version": "v1", "updated": "2016-11-28T03:13:21.000Z" } ], "analyses": { "subjects": [ "11F20", "11F11", "11F37" ], "keywords": [ "prime level", "counting eta-quotients", "modular forms", "rational function", "dimension formula" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }