{ "id": "1611.08818", "version": "v1", "published": "2016-11-27T10:19:49.000Z", "updated": "2016-11-27T10:19:49.000Z", "title": "A remark on the motive of the Fano variety of lines of a cubic", "authors": [ "Robert Laterveer" ], "comment": "12 pages,to appear in Ann. math. Quebec, comments welcome !", "doi": "10.1007/s40316-016-0070-x", "categories": [ "math.AG" ], "abstract": "Let $X$ be a smooth cubic hypersurface, and let $F$ be the Fano variety of lines on $X$. We establish a relation between the Chow motives of $X$ and $F$. This relation implies in particular that if $X$ has finite-dimensional motive (in the sense of Kimura), then $F$ also has finite-dimensional motive. This proves finite-dimensionality for motives of Fano varieties of cubics of dimension $3$ and $5$, and of certain cubics in other dimensions.", "revisions": [ { "version": "v1", "updated": "2016-11-27T10:19:49.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25", "14C30", "14J70", "14N25" ], "keywords": [ "fano variety", "smooth cubic hypersurface", "finite-dimensional motive", "chow motives", "relation implies" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }