{ "id": "1611.08001", "version": "v1", "published": "2016-11-23T21:17:56.000Z", "updated": "2016-11-23T21:17:56.000Z", "title": "On the decategorification of Ozsváth and Szabó's bordered theory for knot Floer homology", "authors": [ "Andrew Manion" ], "comment": "60 pages; 11 figures", "categories": [ "math.GT", "math.QA" ], "abstract": "We relate decategorifications of Ozsv\\'ath-Szab\\'o's new bordered theory for knot Floer homology to representations of $\\mathcal{U}_q(\\mathfrak{gl}(1|1))$. Specifically, we consider two subalgebras $\\mathcal{C}_r(n,\\mathcal{S})$ and $\\mathcal{C}_l(n,\\mathcal{S})$ of Ozsv\\'ath- Szab\\'o's algebra $\\mathcal{B}(n,\\mathcal{S})$, and identify their Grothendieck groups with tensor products of representations $V$ and $V^*$ of $\\mathcal{U}_q(\\mathfrak{gl}(1|1))$, where $V$ is the vector representation. We identify the decategorifications of Ozsv\\'ath-Szab\\'o's DA bimodules for elementary tangles with corresponding maps between representations. Finally, when the algebras are given multi-Alexander gradings, we demonstrate a relationship between the decategorification of Ozsv\\'ath-Szab\\'o's theory and Viro's quantum relative $\\mathcal{A}^1$ of the Reshetikhin-Turaev functor based on $\\mathcal{U}_q(\\mathfrak{gl}(1|1))$.", "revisions": [ { "version": "v1", "updated": "2016-11-23T21:17:56.000Z" } ], "analyses": { "subjects": [ "57M27", "17B37" ], "keywords": [ "knot floer homology", "szabós bordered theory", "ozsvath-szabos da bimodules", "grothendieck groups", "tensor products" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable" } } }