{ "id": "1611.07809", "version": "v1", "published": "2016-11-23T14:22:34.000Z", "updated": "2016-11-23T14:22:34.000Z", "title": "A computable bound of the essential spectral radius of finite range Metropolis--Hastings kernels", "authors": [ "Loïc Hervé", "James Ledoux" ], "journal": "Statistics and Probability Letters, Elsevier, 2016, 117, pp.72-79", "doi": "10.1016/j.spl.2016.05.007", "categories": [ "math.PR" ], "abstract": "Let $\\pi$ be a positive continuous target density on $\\mathbb{R}$. Let $P$ be the Metropolis-Hastings operator on the Lebesgue space $\\mathbb{L}^2(\\pi)$ corresponding to a proposal Markov kernel $Q$ on $\\mathbb{R}$. When using the quasi-compactness method to estimate the spectral gap of $P$, a mandatory first step is to obtain an accurate bound of the essential spectral radius $r\\_{ess}(P)$ of $P$. In this paper a computable bound of $r\\_{ess}(P)$ is obtained under the following assumption on the proposal kernel: $Q$ has a bounded continuous density $q(x,y)$ on $\\mathbb{R}^2$ satisfying the following finite range assumption : $|u| \\textgreater{} s \\, \\Rightarrow\\, q(x,x+u) = 0$ (for some $s\\textgreater{}0$). This result is illustrated with Random Walk Metropolis-Hastings kernels.", "revisions": [ { "version": "v1", "updated": "2016-11-23T14:22:34.000Z" } ], "analyses": { "keywords": [ "finite range metropolis-hastings kernels", "essential spectral radius", "computable bound", "random walk metropolis-hastings kernels", "proposal markov kernel" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }