{ "id": "1611.07707", "version": "v1", "published": "2016-11-23T09:52:05.000Z", "updated": "2016-11-23T09:52:05.000Z", "title": "A minimal model of dynamical phase transition", "authors": [ "Pelerine Tsobgni Nyawo", "Hugo Touchette" ], "comment": "5 pages, 2 figures", "categories": [ "cond-mat.stat-mech" ], "abstract": "We calculate the large deviation functions characterizing the long-time fluctuations of the occupation of drifted Brownian motion and show that these functions have non-analytic points. This provides the first example of dynamical phase transition that appears in a simple, homogeneous Markov process without an additional low-noise, large-volume or hydrodynamic scaling limit.", "revisions": [ { "version": "v1", "updated": "2016-11-23T09:52:05.000Z" } ], "analyses": { "keywords": [ "dynamical phase transition", "minimal model", "large deviation functions characterizing", "long-time fluctuations", "drifted brownian motion" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }