{ "id": "1611.07686", "version": "v1", "published": "2016-11-23T08:35:21.000Z", "updated": "2016-11-23T08:35:21.000Z", "title": "Generalized Rodriguez-Villegas supercongruences involving $p$-adic Gamma functions", "authors": [ "Ji-Cai Liu" ], "comment": "11 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p\\ge 5$ be a prime and $\\langle a\\rangle_p$ denote the least non-negative integer $r$ with $a\\equiv r \\pmod{p}$. We mainly prove that for $\\langle a\\rangle_p\\equiv 0 \\pmod{2}$ \\begin{align*} \\sum_{k=0}^{p-1}\\frac{\\left(\\frac{1}{2}\\right)_k(-a)_k(a+1)_k}{(1)_k^3}\\equiv (-1)^{\\frac{p+1}{2}}\\Gamma_p\\left(-\\frac{a}{2}\\right)^2\\Gamma_p\\left(\\frac{a+1}{2}\\right)^2 \\pmod{p^2}, \\end{align*} where $(x)_k=x(x+1)\\cdots (x+k-1)$ and $\\Gamma_p(\\cdot)$ denotes the $p$-adic Gamma function. This partially extends four Rodriguez-Villegas supercongruences for truncated hypergeometric series ${}_3F_2$.", "revisions": [ { "version": "v1", "updated": "2016-11-23T08:35:21.000Z" } ], "analyses": { "subjects": [ "11A07", "33C20" ], "keywords": [ "adic gamma function", "generalized rodriguez-villegas supercongruences", "truncated hypergeometric series", "partially extends", "non-negative integer" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }