{ "id": "1611.06995", "version": "v1", "published": "2016-11-21T20:23:11.000Z", "updated": "2016-11-21T20:23:11.000Z", "title": "Point processes in a metric space", "authors": [ "Yuwei Zhao" ], "categories": [ "math.PR" ], "abstract": "As a useful and elegant tool of extreme value theory, the study of point processes on a metric space is important and necessary for the analyses of heavy-tailed functional data. This paper focuses on the definition and properties of such point processes. A complete convergence result for a regularly varying iid sequence in a metric space is proved as an example of the application in extreme value theory.", "revisions": [ { "version": "v1", "updated": "2016-11-21T20:23:11.000Z" } ], "analyses": { "keywords": [ "metric space", "point processes", "extreme value theory", "complete convergence result", "elegant tool" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }