{ "id": "1611.06570", "version": "v1", "published": "2016-11-20T19:08:08.000Z", "updated": "2016-11-20T19:08:08.000Z", "title": "Square of a Hamilton cycle in a random graph", "authors": [ "Patrick Bennett", "Andrzej Dudek", "Alan Frieze" ], "categories": [ "math.CO" ], "abstract": "We show that the threshold for the random graph $G_{n,p}$ to contain the square of a Hamilton cycle is $p=\\frac{1}{\\sqrt{n}}$. This improves the previous results of K\\\"uhn and Osthus and also Nenadov and \\v{S}kori\\'c.", "revisions": [ { "version": "v1", "updated": "2016-11-20T19:08:08.000Z" } ], "analyses": { "keywords": [ "hamilton cycle", "random graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }