{ "id": "1611.06470", "version": "v1", "published": "2016-11-20T05:01:47.000Z", "updated": "2016-11-20T05:01:47.000Z", "title": "Bounded orbits of Diagonalizable Flows on finite volume quotients of products of $SL_2(\\mathbb{R})$", "authors": [ "Jinpeng An", "Anish Ghosh", "Lifan Guan" ], "comment": "arXiv admin note: text overlap with arXiv:1605.08510", "categories": [ "math.DS", "math.NT" ], "abstract": "We prove a number field analogue of W. M. Schmidt's conjecture on the intersection of weighted badly approximable vectors and use this to prove an instance of a conjecture of An, Guan and Kleinbock. Namely, let $G := SL_2(\\mathbb{R}) \\times \\dots \\times SL_2(\\mathbb{R}) $ and $\\Gamma$ be a lattice in $G$. We show that the set of points on $G/\\Gamma$ whose forward orbits under a one parameter Ad-semisimple subsemigroup of $G$ are bounded, form a hyperplane absolute winning set.", "revisions": [ { "version": "v1", "updated": "2016-11-20T05:01:47.000Z" } ], "analyses": { "keywords": [ "finite volume quotients", "diagonalizable flows", "bounded orbits", "hyperplane absolute winning set", "parameter ad-semisimple subsemigroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }