{ "id": "1611.06433", "version": "v1", "published": "2016-11-19T21:29:24.000Z", "updated": "2016-11-19T21:29:24.000Z", "title": "The probability density function for the Havriliak-Negami relaxation", "authors": [ "K. Górska", "A. Horzela", "Ł. Bratek", "K. A. Penson", "G. Dattoli" ], "categories": [ "cond-mat.stat-mech", "cond-mat.mtrl-sci" ], "abstract": "We study the functions related to the Havriliak-Negami frequency relaxation $\\sim [1+(i\\omega\\tau_{0})^{\\alpha}]^{-\\beta}$ with $\\tau_{0}$ characteristic time, measured in many experiments. We furnish exact and explicit expression for the response function $f_{\\alpha, \\beta}(t/\\tau_{0})$ in time domain and a probability density $g_{\\alpha, \\beta}(u)$ in space domain for $\\alpha = l/k < 1$ and $\\beta < k/l$, with $k$ and $l$ positive integers. For $0 < \\alpha < 1$ and $\\beta=1$ we reproduce the functions related to the Cole-Cole relaxation. We use the method of integral transforms. We show that $f_{\\alpha, \\beta}(t/\\tau_{0})$ with $\\beta = (2-q)/(q-1)$ and $\\tau_{0} = (q-1)^{1/\\alpha}$, $1 < q < 2$, goes over to the one-sided L\\'{e}vy stable distribution when $q$ tends to one. Moreover, applying the self-similar property of $g_{\\alpha, \\beta}(u)$ we introduce two-variable density which satisfies the integral form of evolution equation.", "revisions": [ { "version": "v1", "updated": "2016-11-19T21:29:24.000Z" } ], "analyses": { "keywords": [ "probability density function", "havriliak-negami relaxation", "havriliak-negami frequency relaxation", "time domain", "integral form" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }