{ "id": "1611.05948", "version": "v1", "published": "2016-11-18T01:54:14.000Z", "updated": "2016-11-18T01:54:14.000Z", "title": "Interval projections of self-similar sets", "authors": [ "Ábel Farkas" ], "categories": [ "math.DS" ], "abstract": "We show if $K$ is a self-similar $1$-set that either satisfies the strong separation or is defined via homotheties then there are at most finitely many lines through the origin such that the projection of $K$ onto them is an interval.", "revisions": [ { "version": "v1", "updated": "2016-11-18T01:54:14.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78", "37C45" ], "keywords": [ "self-similar sets", "interval projections", "strong separation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }