{ "id": "1611.05334", "version": "v1", "published": "2016-11-15T17:34:09.000Z", "updated": "2016-11-15T17:34:09.000Z", "title": "Reconstruction from Representations: Jacobi via Cohomology", "authors": [ "Boris Kruglikov", "Henrik Winther" ], "categories": [ "math.RT", "math.DG" ], "abstract": "A subalgebra of a Lie algebra $\\mathfrak{h}\\subset\\mathfrak{g}$ determines $\\mathfrak{h}$-representation $\\rho$ on $\\mathfrak{m}=\\mathfrak{g}/\\mathfrak{h}$. In this note we discuss how to reconstruct $\\mathfrak{g}$ from $(\\mathfrak{h},\\mathfrak{m},\\rho)$. In other words, we find all the ingredients for building non-reductive Klein geometries. The Lie algebra cohomology plays a decisive role here.", "revisions": [ { "version": "v1", "updated": "2016-11-15T17:34:09.000Z" } ], "analyses": { "subjects": [ "17B56" ], "keywords": [ "representation", "reconstruction", "lie algebra cohomology plays", "building non-reductive klein geometries", "ingredients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }