{ "id": "1611.05309", "version": "v1", "published": "2016-11-16T15:17:52.000Z", "updated": "2016-11-16T15:17:52.000Z", "title": "A lower bound for the gonality conjecture", "authors": [ "Wouter Castryck" ], "categories": [ "math.AG" ], "abstract": "For every integer $k \\geq 3$ we construct a $k$-gonal curve $C$ along with a very ample divisor of degree $2g + k - 1$ (where $g$ is the genus of $C$) to which the vanishing statement from the Green-Lazarsfeld gonality conjecture does not apply.", "revisions": [ { "version": "v1", "updated": "2016-11-16T15:17:52.000Z" } ], "analyses": { "keywords": [ "lower bound", "green-lazarsfeld gonality conjecture", "gonal curve", "ample divisor", "vanishing statement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }