{ "id": "1611.04807", "version": "v1", "published": "2016-11-15T12:36:35.000Z", "updated": "2016-11-15T12:36:35.000Z", "title": "Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction", "authors": [ "Murilo R. Cândido", "Jaume Llibre", "Douglas D. Novaes" ], "categories": [ "math.DS" ], "abstract": "In this work we first provide sufficient conditions to assure the persistence of some zeros of functions having the form $$g(z,\\varepsilon)=g_0(z)+\\sum_{i=1}^k \\varepsilon^i g_i(z)+\\mathcal{O}(\\varepsilon^{k+1}),$$ for $|\\varepsilon|\\neq0$ sufficiently small. Here $g_i:\\mathcal{D}\\rightarrow\\mathbb{R}^n$, for $i=0,1,\\ldots,k$, are smooth functions being $\\mathcal{D}\\subset \\mathbb{R}^n$ an open bounded set. Then we use this result to compute the bifurcation functions which controls the periodic solutions of the following $T$-periodic smooth differential system $$ x'=F_0(t,x)+\\sum_{i=1}^k \\varepsilon^i F_i(t,x)+\\mathcal{O}(\\varepsilon^{k+1}), \\quad (t,z)\\in\\mathbb{S}^1\\times\\mathcal{D}. $$ It is assumed that the unperturbed differential system has a sub-manifold of periodic solutions $\\mathcal{Z}$, $\\textrm{dim}(\\mathcal{Z})\\leq n$. We also study the case when the bifurcation functions have a continuum of zeros. Finally we provide the explicit expressions of the bifurcation functions up to order 5.", "revisions": [ { "version": "v1", "updated": "2016-11-15T12:36:35.000Z" } ], "analyses": { "subjects": [ "34C29", "34C25", "37G15" ], "keywords": [ "higher order perturbed differential systems", "periodic solutions", "lyapunov-schmidt reduction", "bifurcation functions", "persistence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }