{ "id": "1611.04197", "version": "v1", "published": "2016-11-13T21:59:14.000Z", "updated": "2016-11-13T21:59:14.000Z", "title": "Local duality for representations of finite group schemes", "authors": [ "Dave Benson", "Srikanth B. Iyengar", "Henning Krause", "Julia Pevtsova" ], "comment": "22 pages", "categories": [ "math.RT" ], "abstract": "A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander-Reiten triangles for the $\\mathfrak{p}$-local and $\\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\\mathfrak{p}$ in the cohomology ring of the group scheme.", "revisions": [ { "version": "v1", "updated": "2016-11-13T21:59:14.000Z" } ], "analyses": { "subjects": [ "16G10", "20C20", "20G10", "20J06", "18E30" ], "keywords": [ "finite group scheme", "local duality", "representations", "duality theorem", "stable module category" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }