{ "id": "1611.03532", "version": "v1", "published": "2016-11-10T22:05:13.000Z", "updated": "2016-11-10T22:05:13.000Z", "title": "On the strict monotonicity of the first eigenvalue of the $p$-Laplacian on annuli", "authors": [ "T. V. Anoop", "Vladimir Bobkov", "Sarath Sasi" ], "comment": "19 pages", "categories": [ "math.AP", "math.OC" ], "abstract": "Let $B_1$ be a ball in $\\mathbb{R}^N$ centred at the origin and $B_0$ be a smaller ball compactly contained in $B_1$. For $p\\in(1, \\infty)$, using the shape derivative method, we show that the first eigenvalue of the $p$-Laplacian in annulus $B_1\\setminus \\overline{B_0}$ strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as $p \\to 1$ and $p \\to \\infty$ are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fu\\v{c}ik spectrum of the $p$-Laplacian on bounded radial domains.", "revisions": [ { "version": "v1", "updated": "2016-11-10T22:05:13.000Z" } ], "analyses": { "subjects": [ "35J92", "35P30", "35B06", "49R05" ], "keywords": [ "first eigenvalue", "strict monotonicity", "first nontrivial curve", "inner ball moves", "shape derivative method" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }