{ "id": "1611.02981", "version": "v1", "published": "2016-11-07T14:41:15.000Z", "updated": "2016-11-07T14:41:15.000Z", "title": "Representation for bounded linear operator on Hilbert spaces", "authors": [ "Luo Lvlin" ], "comment": "10pages. arXiv admin note: substantial text overlap with arXiv:1503.06750", "categories": [ "math.FA" ], "abstract": "In this paper we construct some $C^{*}$-algebra induced by polar decomposition $T=U|T|$. We get that $T$ is unitary equivalent to $\\sqrt{|\\eta|}M_{z\\phi}$ on $\\mathcal{L}^{2}(\\sigma(|T|),\\mu_{|T|})$, where $\\phi\\in\\mathcal{L}^{\\infty}(\\sigma(|T|),\\mu_{|T|})$ and $\\eta\\in\\mathcal{L}^{1}(\\sigma(|T|),\\mu_{|T|})$. Also, we get that $T$ is normal if and only if $T$ is unitary equivalent to $M_{z\\phi}$ on $\\mathcal{L}^{2}(\\sigma(|T|),\\mu_{|T|})$, and if and only if $T\\in\\mathcal{A}^{'}(|T|)$, where $\\phi\\in\\mathcal{L}^{\\infty}(\\sigma(|T|),\\mu_{|T|})$ and $\\mathcal{A}^{'}(|T|)$ is the commutant of $\\mathcal{A}(|T|)$.", "revisions": [ { "version": "v1", "updated": "2016-11-07T14:41:15.000Z" } ], "analyses": { "subjects": [ "37B99", "46L05", "47A65", "47A67" ], "keywords": [ "bounded linear operator", "hilbert spaces", "representation", "unitary equivalent" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }