{ "id": "1611.02486", "version": "v1", "published": "2016-11-08T11:45:26.000Z", "updated": "2016-11-08T11:45:26.000Z", "title": "On a perfect isometry between principal $p$-blocks of finite groups with cyclic $p$-hyperfocal subgroups", "authors": [ "Hiroshi Horimoto", "Atumi Watanabe" ], "categories": [ "math.RT", "math.GR" ], "abstract": "Let $G$ be a finite group with a Sylow $p$-subgroup $P$. We prove that the principal $p$-blocks of $G$ and $N_G(P)$ are perfectly isometric under the assumption $G$ has a cyclic $p$-hyperfocal subgroup.", "revisions": [ { "version": "v1", "updated": "2016-11-08T11:45:26.000Z" } ], "analyses": { "subjects": [ "20C20" ], "keywords": [ "finite group", "hyperfocal subgroup", "perfect isometry", "perfectly isometric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }