{ "id": "1611.02390", "version": "v1", "published": "2016-11-08T05:17:57.000Z", "updated": "2016-11-08T05:17:57.000Z", "title": "On the $C^{1,1}$ regularity of geodesics in the space of Kähler metrics", "authors": [ "Jianchun Chu", "Valentino Tosatti", "Ben Weinkove" ], "comment": "13 pages", "categories": [ "math.DG", "math.CV" ], "abstract": "We prove that any two Kahler potentials on a compact Kahler manifold can be connected by a geodesic segment of C^{1,1} regularity. This follows from an a priori interior real Hessian bound for solutions of the nondegenerate complex Monge-Ampere equation, which is independent of a positive lower bound for the right hand side.", "revisions": [ { "version": "v1", "updated": "2016-11-08T05:17:57.000Z" } ], "analyses": { "subjects": [ "35J96", "32Q15", "32W20", "53C55" ], "keywords": [ "kähler metrics", "regularity", "priori interior real hessian bound", "nondegenerate complex monge-ampere equation", "right hand side" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }