{ "id": "1611.01818", "version": "v1", "published": "2016-11-06T18:27:26.000Z", "updated": "2016-11-06T18:27:26.000Z", "title": "A note on the positive semidefinitness of $A_α(G)$", "authors": [ "Vladimir Nikiforov", "Oscar Rojo" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph with adjacency matrix $A(G)$ and let $D(G)$ be the diagonal matrix of the degrees of $G$. For every real $\\alpha\\in\\left[ 0,1\\right] $, write $A_{\\alpha}\\left( G\\right) $ for the matrix \\[ A_{\\alpha}\\left( G\\right) =\\alpha D\\left( G\\right) +(1-\\alpha)A\\left( G\\right) . \\] Let $\\alpha_{0}\\left( G\\right) $ be the smallest $\\alpha$ for which $A_{\\alpha}(G)$ is positive semidefinite. It is known that $\\alpha_{0}\\left( G\\right) \\leq1/2$. The main results of this paper are: (1) if $G$ is $d$-regular then \\[ \\alpha_{0}=\\frac{-\\lambda_{\\min}(A(G))}{d-\\lambda_{\\min}(A(G))}, \\] where $\\lambda_{\\min}(A(G))$ is the smallest eigenvalue of $A(G)$; (2) $G$ contains a bipartite component if and only if $\\alpha_{0}\\left( G\\right) =1/2$; (3) if $G$ is $r$-colorable, then $\\alpha_{0}\\left( G\\right) \\geq1/r$.", "revisions": [ { "version": "v1", "updated": "2016-11-06T18:27:26.000Z" } ], "analyses": { "subjects": [ "05C50", "15A48" ], "keywords": [ "positive semidefinitness", "smallest eigenvalue", "adjacency matrix", "main results", "diagonal matrix" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }