{ "id": "1611.01800", "version": "v1", "published": "2016-11-06T16:06:12.000Z", "updated": "2016-11-06T16:06:12.000Z", "title": "Callias-type operators in $C^\\ast$-algebras and positive scalar curvature on noncompact manifolds", "authors": [ "Simone Cecchini" ], "comment": "47 pages", "categories": [ "math.DG", "math.GT", "math.KT" ], "abstract": "A Dirac-type operator on a complete Riemannian manifold is of Callias-type if its square is a Schr\\\"{o}dinger-type operator with a potential uniformly positive outside of a compact set. We develop the theory of Callias-type operators twisted with Hilbert $C^\\ast$-module bundles and prove an index theorem for such operators. As an application, we derive an obstruction to the existence of complete Riemannian metrics of positive scalar curvature on noncompact spin manifolds in terms of closed submanifolds of codimension-one.", "revisions": [ { "version": "v1", "updated": "2016-11-06T16:06:12.000Z" } ], "analyses": { "keywords": [ "positive scalar curvature", "callias-type operators", "noncompact manifolds", "complete riemannian manifold", "complete riemannian metrics" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }