{ "id": "1611.01188", "version": "v1", "published": "2016-11-03T21:03:16.000Z", "updated": "2016-11-03T21:03:16.000Z", "title": "On the well-posedness of the hyperelastic rod equation", "authors": [ "Hasan Inci" ], "categories": [ "math.AP" ], "abstract": "In this paper we consider the hyperelastic rod equation on the Sobolev spaces $H^s(\\R)$, $s > 3/2$. Using a geometric approach we show that for any $T > 0$ the corresponding solution map, $u(0) \\mapsto u(T)$, is nowhere locally uniformly continuous. The method applies also to the periodic case $H^s(\\mathbb T)$, $s > 3/2$.", "revisions": [ { "version": "v1", "updated": "2016-11-03T21:03:16.000Z" } ], "analyses": { "keywords": [ "hyperelastic rod equation", "well-posedness", "periodic case", "method applies", "sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }