{ "id": "1611.00925", "version": "v1", "published": "2016-11-03T09:25:45.000Z", "updated": "2016-11-03T09:25:45.000Z", "title": "On the analytic systole of Riemannian surfaces of finite type", "authors": [ "Werner Ballmann", "Henrik Matthiesen", "Sugata Mondal" ], "comment": "35 pages, 1 figure", "categories": [ "math.DG" ], "abstract": "In our previous work we introduced, for a Riemannian surface $S$, the quantity $ \\Lambda(S):=\\inf_F\\lambda_0(F)$, where $\\lambda_0(F)$ denotes the first Dirichlet eigenvalue of $F$ and the infimum is taken over all compact subsurfaces $F$ of $S$ with smooth boundary and abelian fundamental group. A result of Brooks implies $\\Lambda(S)\\ge\\lambda_0(\\tilde{S})$, the bottom of the spectrum of the universal cover $\\tilde{S}$. In this paper, we discuss the strictness of the inequality. Moreover, in the case of curvature bounds, we relate $\\Lambda(S)$ with the systole, improving a result by the last named author.", "revisions": [ { "version": "v1", "updated": "2016-11-03T09:25:45.000Z" } ], "analyses": { "keywords": [ "riemannian surface", "finite type", "analytic systole", "first dirichlet eigenvalue", "abelian fundamental group" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }