{ "id": "1611.00548", "version": "v1", "published": "2016-11-02T11:18:30.000Z", "updated": "2016-11-02T11:18:30.000Z", "title": "A uniform asymptotic expansion for the incomplete gamma functions revisited", "authors": [ "R B Paris" ], "comment": "9 pages", "categories": [ "math.CA" ], "abstract": "A new uniform asymptotic expansion for the incomplete gamma function $\\Gamma(a,z)$ valid for large values of $z$ was given by the author in {\\it J. Comput. Appl. Math.} {\\bf 148} (2002) 323--339. This expansion contains a complementary error function of an argument measuring transition across the point $z=a$, with easily computable coefficients that do not involve a removable singularity in the neighbourhood of this point. In this note we correct a misprint in the listing of certain coefficients in this expansion and discuss in more detail the situation corresponding to $\\Gamma(a,a)$.", "revisions": [ { "version": "v1", "updated": "2016-11-02T11:18:30.000Z" } ], "analyses": { "subjects": [ "30E15", "33B20", "34E05", "41A30", "41A60" ], "keywords": [ "incomplete gamma function", "uniform asymptotic expansion", "complementary error function", "large values", "argument measuring transition" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }