{ "id": "1611.00493", "version": "v1", "published": "2016-11-02T07:46:35.000Z", "updated": "2016-11-02T07:46:35.000Z", "title": "First-passage times for random walks with non-identically distributed increments", "authors": [ "Denis Denisov", "Alexander Sakhanenko", "Vitali Wachtel" ], "categories": [ "math.PR" ], "abstract": "We consider random walks with independent but not necessarily identical distributed increments. Assuming that the increments satisfy the well-known Lindeberg condition, we investigate the asymptotic behaviour of first-passage times over moving boundaries. Furthermore, we prove that a properly rescaled random walk conditioned to stay above the boundary up to time $n$ converges, as $n\\to\\infty$, towards the Brownian meander.", "revisions": [ { "version": "v1", "updated": "2016-11-02T07:46:35.000Z" } ], "analyses": { "subjects": [ "60G50" ], "keywords": [ "first-passage times", "non-identically distributed increments", "well-known lindeberg condition", "asymptotic behaviour", "properly rescaled random walk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }