{ "id": "1611.00462", "version": "v1", "published": "2016-11-02T03:44:03.000Z", "updated": "2016-11-02T03:44:03.000Z", "title": "Endpoint resolvent estimates for compact Riemannian manifolds", "authors": [ "Rupert L. Frank", "Lukas Schimmer" ], "comment": "14 pages", "categories": [ "math.AP", "math.CA", "math.SP" ], "abstract": "We prove $L^p\\to L^{p'}$ bounds for the resolvent of the Laplace-Beltrami operator on a compact Riemannian manifold of dimension $n$ in the endpoint case $p=2(n+1)/(n+3)$. It has the same behavior with respect to the spectral parameter $z$ as its Euclidean analogue, due to Kenig-Ruiz-Sogge, provided a parabolic neighborhood of the positive half-line is removed. This is region is optimal, for instance, in the case of a sphere.", "revisions": [ { "version": "v1", "updated": "2016-11-02T03:44:03.000Z" } ], "analyses": { "keywords": [ "compact riemannian manifold", "endpoint resolvent estimates", "spectral parameter", "parabolic neighborhood", "euclidean analogue" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }