{ "id": "1610.09725", "version": "v1", "published": "2016-10-30T22:59:35.000Z", "updated": "2016-10-30T22:59:35.000Z", "title": "A new construction for the shortest non-trivial element in the lower central series", "authors": [ "Abdelrhman Elkasapy" ], "comment": "7 pages", "categories": [ "math.GR" ], "abstract": "We provide a new upper bound for the length for the shortest non-trivial element in the lower central series $\\gamma_n(\\mathbb{F}_2)$ of the free group on two generators. We prove that it has an asymptotic behaviour of the form $O(n^{\\log_{\\varphi}(2)})$, where $\\varphi=1.618...$ is the golden ratio. This new technique is used to provide new estimates on the length of laws for finite groups and on almost laws for compact groups.", "revisions": [ { "version": "v1", "updated": "2016-10-30T22:59:35.000Z" } ], "analyses": { "keywords": [ "lower central series", "shortest non-trivial element", "construction", "upper bound", "compact groups" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }