{ "id": "1610.08933", "version": "v1", "published": "2016-10-27T19:05:13.000Z", "updated": "2016-10-27T19:05:13.000Z", "title": "Asymptotic behavior of flows by powers of the Gaussian curvature", "authors": [ "Simon Brendle", "Kyeongsu Choi", "Panagiota Daskalopoulos" ], "categories": [ "math.DG", "math.AP" ], "abstract": "We consider a one-parameter family of strictly convex hypersurfaces in $\\mathbb{R}^{n+1}$ moving with speed $- K^\\alpha \\nu$, where $\\nu$ denotes the outward-pointing unit normal vector and $\\alpha \\geq \\frac{1}{n+2}$. For $\\alpha > \\frac{1}{n+2}$, we show that the flow converges to a round sphere after rescaling. In the affine invariant case $\\alpha=\\frac{1}{n+2}$, our arguments give an alternative proof of the fact that the flow converges to an ellipsoid after rescaling.", "revisions": [ { "version": "v1", "updated": "2016-10-27T19:05:13.000Z" } ], "analyses": { "keywords": [ "gaussian curvature", "asymptotic behavior", "flow converges", "outward-pointing unit normal vector", "affine invariant case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }