{ "id": "1610.08855", "version": "v1", "published": "2016-10-27T15:54:47.000Z", "updated": "2016-10-27T15:54:47.000Z", "title": "The signless Laplacian spectral radius of subgraphs of regular graphs", "authors": [ "Qi Kong", "Ligong Wang" ], "comment": "9 pages, 2 figures, 1 table", "categories": [ "math.CO" ], "abstract": "Let $q(H)$ be the signless Laplacian spectral radius of a graph $H$. In this paper, we prove that \\\\1. Let $H$ be a proper subgraph of a $\\Delta$-regular graph $G$ with $n$ vertices and diameter $D$. Then $$2\\Delta - q(H)>\\frac{1}{n(D-\\frac{1}{4})}.$$ \\\\2. Let $H$ be a proper subgraph of a $k$-connected $\\Delta$-regular graph $G$ with $n$ vertices, where $k\\geq 2$. Then $$2\\Delta-q(H)>\\frac{2(k-1)^{2}}{2(n-\\Delta)(n-\\Delta+2k-4)+(n+1)(k-1)^{2}}.$$ Finally, we compare the two bounds. We obtain that when $k>2\\sqrt{\\frac{(n-\\Delta)(n+\\Delta-4)}{n(4D-3)-2}}+1$, the second bound is always better than the first. On the other hand, when $k<\\frac{2(n-\\Delta)}{\\sqrt{n(4D-3)-2}}+1$, the first bound is always better than the second.", "revisions": [ { "version": "v1", "updated": "2016-10-27T15:54:47.000Z" } ], "analyses": { "subjects": [ "05C50", "15A18" ], "keywords": [ "signless laplacian spectral radius", "regular graph", "proper subgraph", "second bound", "first bound" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }