{ "id": "1610.08726", "version": "v1", "published": "2016-10-27T11:58:45.000Z", "updated": "2016-10-27T11:58:45.000Z", "title": "Wilf's conjecture for numerical semigroups", "authors": [ "Mariam Dhayni" ], "categories": [ "math.CO", "math.NT" ], "abstract": "Let $S\\subseteq \\N$ be a numerical semigroup with multiplicity $m$, embedding dimension $\\nu$ and conductor $c=f+1=qm-\\rho$ for some $q,\\rho\\in\\N$ with $\\rho\\textless{}m$. Let Ap$(S,m) = \\{w\\_0\\textless{}w\\_1 \\textless{} \\ldots \\textless{}w\\_{m-1}\\}$ be the Ap\\'ery set of $S$. The aim of this paper is to prove Wilf's Conjecture in some special cases. First, we prove that if $w\\_{m-1}\\geq w\\_1+w\\_{\\alpha}$ and $(2+\\frac{\\alpha-3}{q})\\nu\\geq m$ for some $1\\textless{}\\alpha\\textless{}m-1$, then $S$ satisfies Wilf's Conjecture. Then, we prove the conjecture in the following cases: $(2+\\frac{1}{q})\\nu\\geq m$, $m-\\nu\\leq 5$ and $m=9$. Finally, the conjecture is proved if $w\\_{m-1}\\geq w\\_{\\alpha-1}+w\\_{\\alpha}$ and $(\\frac{\\alpha+3}{3})\\nu\\geq m$ for some $1\\textless{}\\alpha\\textless{}m-1$.", "revisions": [ { "version": "v1", "updated": "2016-10-27T11:58:45.000Z" } ], "analyses": { "keywords": [ "numerical semigroup", "satisfies wilfs conjecture", "apery set", "special cases", "embedding dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }