{ "id": "1610.08151", "version": "v1", "published": "2016-10-26T02:37:10.000Z", "updated": "2016-10-26T02:37:10.000Z", "title": "Monotonicity of the speed for biased random walk on Galton-Watson tree", "authors": [ "Song He", "Wang Longmin", "Xiang Kainan" ], "categories": [ "math.PR" ], "abstract": "Ben Arous, Fribergh and Sidoravicius \\cite{GAV2014} proved that speed of biased random walk $RW_\\lambda$ on a Galton-Watson tree without leaves is strictly decreasing for $\\lambda\\leq \\frac{m_1}{1160},$ where $m_1$ is minimal degree of the Galton-Watson tree. And A\\\"{\\i}d\\'{e}kon \\cite{EA2013} improved this result to $\\lambda\\leq \\frac{1}{2}.$ In this paper, we prove that for the $RW_{\\lambda}$ on a Galton-Watson tree without leaves, its speed is strictly decreasing for $\\lambda\\in \\left[0,\\frac{m_1}{1+\\sqrt{1-\\frac{1}{m_1}}}\\right]$ when $m_1\\geq 2;$ and we owe the proof to A\\\"{\\i}d\\'{e}kon \\cite{EA2013}.", "revisions": [ { "version": "v1", "updated": "2016-10-26T02:37:10.000Z" } ], "analyses": { "subjects": [ "60J15", "60J80" ], "keywords": [ "biased random walk", "galton-watson tree", "monotonicity", "minimal degree", "sidoravicius" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }