{ "id": "1610.07973", "version": "v1", "published": "2016-10-25T17:22:03.000Z", "updated": "2016-10-25T17:22:03.000Z", "title": "Geometric realizations of affine Kac-Moody algebras", "authors": [ "Vyacheslav Futorny", "Libor Křižka", "Petr Somberg" ], "categories": [ "math.RT", "math-ph", "math.AG", "math.FA", "math.MP", "math.OA" ], "abstract": "The goal of the present paper is to obtain new free field realizations of affine Kac-Moody algebras motivated by geometric representation theory for generalized flag manifolds of finite-dimensional semisimple Lie groups. We provide an explicit construction of a large class of irreducible modules associated with certain parabolic subalgebras covering all known special cases.", "revisions": [ { "version": "v1", "updated": "2016-10-25T17:22:03.000Z" } ], "analyses": { "keywords": [ "affine kac-moody algebras", "geometric realizations", "finite-dimensional semisimple lie groups", "geometric representation theory", "free field realizations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }