{ "id": "1610.07658", "version": "v1", "published": "2016-10-24T21:38:03.000Z", "updated": "2016-10-24T21:38:03.000Z", "title": "On transfer operators on the circle with trigonometric weights", "authors": [ "Xianghong Chen", "Hans Volkmer" ], "comment": "30 pages, 4 figures", "categories": [ "math.DS", "math.CA", "math.NT" ], "abstract": "We study spectral properties of the transfer operators $L$ defined on the circle $\\mathbb T=\\mathbb R/\\mathbb Z$ by $$(Lu)(t)=\\frac{1}{d}\\sum_{i=0}^{d-1} f\\left(\\frac{t+i}{d}\\right)u\\left(\\frac{t+i}{d}\\right),\\ t\\in\\mathbb T$$ where $u$ is a function on $\\mathbb T$. We focus in particular on the cases $f(t)=|\\cos(\\pi t)|^q$ and $f(t)=|\\sin(\\pi t)|^q$, which are closely related to some classical Fourier-analytic questions. We also obtain some explicit computations, particularly in the case $d=2$. Our study extends work of Strichartz \\cite{Strichartz1990} and Fan and Lau \\cite{FanLau1998}.", "revisions": [ { "version": "v1", "updated": "2016-10-24T21:38:03.000Z" } ], "analyses": { "subjects": [ "37C30", "37E10", "35P15", "37N99" ], "keywords": [ "transfer operators", "trigonometric weights", "study spectral properties", "study extends work", "classical fourier-analytic questions" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }