{ "id": "1610.07409", "version": "v1", "published": "2016-10-24T13:43:58.000Z", "updated": "2016-10-24T13:43:58.000Z", "title": "Coarse and fine geometry of the Thurston metric", "authors": [ "David Dumas", "Anna Lenzhen", "Kasra Rafi", "Jing Tao" ], "comment": "40 pages, 11 figures", "categories": [ "math.GT" ], "abstract": "We study the geometry of the Thurston metric on the Teichm\\\"uller space $\\mathcal{T}(S)$ of hyperbolic structures on a surface $S$. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus, $S_{1,1}$. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden's theorem.", "revisions": [ { "version": "v1", "updated": "2016-10-24T13:43:58.000Z" } ], "analyses": { "subjects": [ "30F60", "57M50" ], "keywords": [ "thurston metric", "fine geometry", "global behavior", "hyperbolic structures", "finite type" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }