{ "id": "1610.07253", "version": "v1", "published": "2016-10-24T00:47:03.000Z", "updated": "2016-10-24T00:47:03.000Z", "title": "Dual Ore's theorem for distributive intervals of small index", "authors": [ "Sebastien Palcoux" ], "comment": "15 pages; comments are welcome", "categories": [ "math.GR", "math.CO", "math.RT" ], "abstract": "This paper proves a dual version of a theorem of Oystein Ore for every distributive interval of finite groups [H,G] of index |G:H|<9720, and for every boolean interval of rank <7. It has applications to representation theory for every finite group.", "revisions": [ { "version": "v1", "updated": "2016-10-24T00:47:03.000Z" } ], "analyses": { "subjects": [ "20D60", "05E15", "20C15", "06C15" ], "keywords": [ "dual ores theorem", "distributive interval", "small index", "finite group", "dual version" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }