{ "id": "1610.06948", "version": "v1", "published": "2016-10-21T20:42:51.000Z", "updated": "2016-10-21T20:42:51.000Z", "title": "Bases for spaces of highest weight vectors in arbitrary characteristic", "authors": [ "Adam Dent", "Rudolf Tange" ], "categories": [ "math.RT" ], "abstract": "Let k be an algebraically closed field of arbitrary characteristic. First we give explicit bases for the highest weight vectors for the action of GL_r x GL_s on the coordinate ring k[Mat_{rs}^m] of m-tuples of r x s-matrices. It turns out that this is done most conveniently by giving an explicit good GL_r x GL_s-filtration on k[Mat_{rs}^m]. Then we deduce from this result explicit spanning sets of the k[Mat_n]^{GL_n}-modules of highest weight vectors in the coordinate ring k[Mat_n] under the conjugation action of GL_n.", "revisions": [ { "version": "v1", "updated": "2016-10-21T20:42:51.000Z" } ], "analyses": { "subjects": [ "13A50", "16W22", "20G05" ], "keywords": [ "highest weight vectors", "arbitrary characteristic", "result explicit spanning sets", "coordinate ring", "conjugation action" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }