{ "id": "1610.06900", "version": "v1", "published": "2016-10-21T19:22:34.000Z", "updated": "2016-10-21T19:22:34.000Z", "title": "The variance of divisor sums in arithmetic progressions", "authors": [ "Brad Rodgers", "Kannan Soundararajan" ], "comment": "29 pages", "categories": [ "math.NT" ], "abstract": "We study the variance of sums of the $k$-fold divisor function $d_k(n)$ over sparse arithmetic progressions, with averaging over both residue classes and moduli. In a restricted range, we confirm an averaged version of a recent conjecture about the asymptotics of this variance. This result is closely related to moments of Dirichlet $L$-functions and our proof relies on the asymptotic large sieve.", "revisions": [ { "version": "v1", "updated": "2016-10-21T19:22:34.000Z" } ], "analyses": { "keywords": [ "divisor sums", "fold divisor function", "sparse arithmetic progressions", "asymptotic large sieve", "residue classes" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }