{ "id": "1610.06030", "version": "v1", "published": "2016-10-19T14:29:10.000Z", "updated": "2016-10-19T14:29:10.000Z", "title": "Improved nonrelativistic limit for ground states of the Schrödinger and Hartree equations", "authors": [ "Woocheol Choi", "Younghun Hong", "Jinmyoung Seok" ], "comment": "22 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "Lenzmann \\cite{L2} and Choi-Seok \\cite{CS} proved that the ground states of the pseudo-relativistic Schr\\\"odinger equation with Hartree nonlinearity or power type nonlinearity \\[ \\big(\\sqrt{-c^2 \\Delta +\\tfrac{c^4}{4}} - \\tfrac{c^2}{2} \\big) u + \\mu u = \\mathcal{N}(u) \\] converges in $H^1 (\\mathbb{R}^n)$ to the ground state $u_{\\infty}$ of the nonrelativistic limit equation \\[ -\\Delta u + \\mu u = \\mathcal{N}(u). \\] In this paper, we improve these results by showing the convergence in higher order Sobolev spaces with an explicit convergence rate given by $1/c^2$, which turns out to be optimal.", "revisions": [ { "version": "v1", "updated": "2016-10-19T14:29:10.000Z" } ], "analyses": { "keywords": [ "ground state", "hartree equations", "higher order sobolev spaces", "schrödinger", "nonrelativistic limit equation" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }