{ "id": "1610.05620", "version": "v1", "published": "2016-10-18T13:57:39.000Z", "updated": "2016-10-18T13:57:39.000Z", "title": "Collinear triples and quadruples for Cartesian products in $\\mathbb{F}_p^2$", "authors": [ "Giorgis Petridis" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "We combine a recent point-line incidence bound of Stevens and de Zeeuw with an older lemma of Bourgain, Katz and Tao to bound the number of collinear triples and quadruples in a Cartesian product in $\\mathbb{F}_p^2$.", "revisions": [ { "version": "v1", "updated": "2016-10-18T13:57:39.000Z" } ], "analyses": { "keywords": [ "cartesian product", "collinear triples", "quadruples", "point-line incidence bound", "older lemma" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }