{ "id": "1610.04897", "version": "v1", "published": "2016-10-16T18:28:10.000Z", "updated": "2016-10-16T18:28:10.000Z", "title": "Exponential decay of connectivity and uniqueness in percolation on finite and infinite graphs", "authors": [ "Kathleen E. Hamilton", "Leonid P. Pryadko" ], "comment": "2 pages. Abstract for the SIAM Workshop on Network Science (NS16), July 15-16, 2016, Boston, Massachusetts", "categories": [ "math-ph", "cond-mat.dis-nn", "math.MP" ], "abstract": "We give an upper bound for the uniqueness transition on an arbitrary locally finite graph ${\\cal G}$ in terms of the limit of the spectral radii $\\rho\\left[ H({\\cal G}_t)\\right]$ of the non-backtracking (Hashimoto) matrices for an increasing sequence of subgraphs ${\\cal G}_t\\subset{\\cal G}_{t+1}$ which converge to ${\\cal G}$. With the added assumption of strong local connectivity for the oriented line graph (OLG) of ${\\cal G}$, connectivity on any finite subgraph ${\\cal G}'\\subset{\\cal G}$ decays exponentially for $p<(\\rho\\left[ H({\\cal G}^{\\prime})\\right])^{-1}$.", "revisions": [ { "version": "v1", "updated": "2016-10-16T18:28:10.000Z" } ], "analyses": { "keywords": [ "exponential decay", "infinite graphs", "percolation", "strong local connectivity", "arbitrary locally finite graph" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable" } } }