{ "id": "1610.04330", "version": "v1", "published": "2016-10-14T04:44:49.000Z", "updated": "2016-10-14T04:44:49.000Z", "title": "On Sets of Large Fourier Transform Under Changes in Domain", "authors": [ "Joel Laity", "Barak Shani" ], "categories": [ "math.CA" ], "abstract": "A function $f:\\mathbb{Z}_n \\to \\mathbb{C}$ can be represented as a linear combination $f(x)=\\sum_{\\alpha \\in \\mathbb{Z}_n}\\widehat{f}(\\alpha) \\chi_{\\alpha,n}(x)$ where $\\widehat{f}$ is the (discrete) Fourier transform of $f$. Clearly, the basis $\\{\\chi_{\\alpha,n}(x):=\\exp(2\\pi i \\alpha x/n)\\}$ depends on the value $n$. We show that if $f$ has \"large\" Fourier coefficients, then the function $\\widetilde{f}:\\mathbb{Z}_m \\to \\mathbb{C}$, given by \\[ \\widetilde{f}(x) = \\begin{cases} f(x) & \\text{when } 0\\leq x < \\min(n, m), \\newline 0 & \\text{otherwise}, \\end{cases} \\] also has \"large\" coefficients. Moreover, they are all contained in a \"small\" interval around $\\lfloor \\frac{m}{n}\\alpha \\rceil$ for each $\\alpha \\in \\mathbb{Z}_n$ such that $\\widehat{f}(\\alpha)$ is large. One can use this result to recover the large Fourier coefficients of a function $f$ by redefining it on a convenient domain. One can also use this result to reprove a result by Morillo and R{\\`a}fols: \\emph{single-bit} functions, defined over any domain, have a small set of large coefficients.", "revisions": [ { "version": "v1", "updated": "2016-10-14T04:44:49.000Z" } ], "analyses": { "keywords": [ "large fourier transform", "large fourier coefficients", "linear combination", "small set", "convenient domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }