{ "id": "1610.04195", "version": "v1", "published": "2016-10-13T18:36:58.000Z", "updated": "2016-10-13T18:36:58.000Z", "title": "Maximum of the Ginzburg-Landau fields", "authors": [ "David Belius", "Wei Wu" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study two dimensional massless field in a box with potential $V\\left( \\nabla \\phi \\left( \\cdot \\right) \\right) $ and zero boundary condition, where $V$ is any symmetric and uniformly convex function. Naddaf-Spencer and Miller proved the macroscopic averages of this field converge to a continuum Gaussian free field. In this paper we prove the distribution of local marginal $\\phi \\left( x\\right) $, for any $x$ in the bulk, has a Gaussian tail. We further characterize the leading order of the maximum and dimension of high points of this field, thus generalize the results of Bolthausen-Deuschel-Giacomin and Daviaud for the discrete Gaussian free field.", "revisions": [ { "version": "v1", "updated": "2016-10-13T18:36:58.000Z" } ], "analyses": { "keywords": [ "ginzburg-landau fields", "discrete gaussian free field", "continuum gaussian free field", "zero boundary condition", "uniformly convex function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }