{ "id": "1610.04095", "version": "v1", "published": "2016-10-13T14:23:12.000Z", "updated": "2016-10-13T14:23:12.000Z", "title": "Lorentz Hypersurfaces satisfying $\\triangle \\vec {H}= α\\vec {H}$ with non diagonal shape operator", "authors": [ "Deepika", "Andreas Arvanitoyeorgos", "Ram Shankar Gupta" ], "comment": "13 pages. arXiv admin note: text overlap with arXiv:1610.03005", "categories": [ "math.DG" ], "abstract": "We study Lorentz hypersurfaces $M_{1}^{n}$ in $E_{1}^{n+1}$ satisfying $\\triangle \\vec {H}= \\alpha \\vec {H}$ with non diagonal shape operator, having complex eigenvalues. We prove that every such Lorentz hypersurface in $E_{1}^{n+1}$ having at most five distinct principal curvatures has constant mean curvature.", "revisions": [ { "version": "v1", "updated": "2016-10-13T14:23:12.000Z" } ], "analyses": { "subjects": [ "53D12", "53C40", "53C42" ], "keywords": [ "non diagonal shape operator", "lorentz hypersurfaces satisfying", "distinct principal curvatures", "study lorentz hypersurfaces", "constant mean curvature" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }