{ "id": "1610.04044", "version": "v1", "published": "2016-10-13T12:11:35.000Z", "updated": "2016-10-13T12:11:35.000Z", "title": "Diophantine approximation by prime numbers of a special form", "authors": [ "S. I. Dimitrov", "T. L. Todorova" ], "categories": [ "math.NT" ], "abstract": "We show that for $B>1$ and for constants $\\lambda _i,\\,i=1,2,3$ subject to certain assumptions, there are infinitely many prime triples $p_1,\\, p_2,\\, p_3$ satisfying the inequality $|\\lambda _1p_1 + \\lambda _2p_2 + \\lambda _3p_3+\\eta| < [\\log (\\max p_j)]^{-B}$ and such that $p_i+2=P_8,i=1,2,3$. The proof uses Davenport - Heilbronn adaption of the circle method together with a vector sieve method.", "revisions": [ { "version": "v1", "updated": "2016-10-13T12:11:35.000Z" } ], "analyses": { "keywords": [ "prime numbers", "special form", "diophantine approximation", "vector sieve method", "prime triples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }