{ "id": "1610.04020", "version": "v1", "published": "2016-10-13T10:57:36.000Z", "updated": "2016-10-13T10:57:36.000Z", "title": "There is no Diophantine quintuple", "authors": [ "Bo He", "Alain Togbè", "Volker Ziegler" ], "categories": [ "math.NT" ], "abstract": "A set of $m$ positive integers $\\{a_1, a_2, \\dots , a_m\\}$ is called a Diophantine $m$-tuple if $a_i a_j + 1$ is a perfect square for all $1 \\le i < j \\le m$. In 2004 Dujella proved that there is no Diophantine sextuple and that there are at most finitely many Diophantine quintuples. In particular, a folklore conjecture concerning Diophantine $m$-tuples states that no Diophantine quintuple exists at all. In this paper we prove this conjecture.", "revisions": [ { "version": "v1", "updated": "2016-10-13T10:57:36.000Z" } ], "analyses": { "keywords": [ "diophantine quintuple", "folklore conjecture concerning diophantine", "diophantine sextuple", "perfect square", "tuples states" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }