{ "id": "1610.03869", "version": "v1", "published": "2016-10-12T20:37:27.000Z", "updated": "2016-10-12T20:37:27.000Z", "title": "Unitarily invariant norm inequalities for elementary operators involving $G_{1}$ operators", "authors": [ "Fuad Kittaneh", "Mohammad Sal Moslehian", "Mohammad Sababheh" ], "comment": "11 pages; to appear in Linear Algebra Appl. (LAA)", "categories": [ "math.FA", "math.OA" ], "abstract": "In this paper, motivated by perturbation theory of operators, we present some upper bounds for $|||f(A)Xg(B)+ X|||$ in terms of $|||\\,|AXB|+|X|\\,|||$ and $|||f(A)Xg(B)- X|||$ in terms of $|||\\,|AX|+|XB|\\,|||$, where $A, B$ are $G_{1}$ operators, $|||\\cdot|||$ is a unitarily invariant norm and $f, g$ are certain analytic functions. Further, we find some new upper bounds for the the Schatten $2$-norm of $f(A)X\\pm Xg(B)$. Several special cases are discussed as well.", "revisions": [ { "version": "v1", "updated": "2016-10-12T20:37:27.000Z" } ], "analyses": { "subjects": [ "15A60", "30E20", "47A30", "47B10", "47B15", "47B20" ], "keywords": [ "unitarily invariant norm inequalities", "elementary operators", "upper bounds", "perturbation theory", "analytic functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }