{ "id": "1610.03575", "version": "v1", "published": "2016-10-12T01:41:13.000Z", "updated": "2016-10-12T01:41:13.000Z", "title": "On Seneta-Heyde Scaling for a stable branching random walk", "authors": [ "Hui He", "Jingning Liu", "Mei Zhang" ], "categories": [ "math.PR" ], "abstract": "We consider a discrete-time branching random walk in the boundary case, where the associated random walk is in the domain of attraction of an $\\alpha$-stable law with $1<\\alpha<2$. We prove that the derivative martingale $D_n$ converges to a non-trivial limit $D_\\infty$ under some regular conditions. We also study the additive martingale $W_n$, and prove $n^\\frac{1}{\\alpha}W_n$ converges in probability to a constant multiple of $D_\\infty$.", "revisions": [ { "version": "v1", "updated": "2016-10-12T01:41:13.000Z" } ], "analyses": { "keywords": [ "stable branching random walk", "seneta-heyde scaling", "discrete-time branching random walk", "constant multiple", "associated random walk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }