{ "id": "1610.03384", "version": "v1", "published": "2016-10-11T18:17:12.000Z", "updated": "2016-10-11T18:17:12.000Z", "title": "Supercongruences involving Lucas sequences", "authors": [ "Zhi-Wei Sun" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "For $A,B\\in\\mathbb Z$, the Lucas sequence $u_n(A,B)\\ (n=0,1,2,\\ldots)$ are defined by $u_0(A,B)=0$, $u_1(A,B)=1$, and $u_{n+1}(A,B) = Au_n(A,B)-Bu_{n-1}(A,B)$ $(n=1,2,3,\\ldots).$ For any odd prime $p$ and positive integer $n$, we establish the new result $$\\frac{u_{pn}(A,B) - (\\frac{A^2-4B}p) u_n(A,B)}{pn} \\in \\mathbb Z_p,$$ where $(\\frac{\\cdot}p)$ is the Legendre symbol and $\\mathbb Z_p$ is the ring of $p$-adic integers. Let $m\\in\\mathbb Z\\setminus\\{0\\}$ and $\\Delta=m(m-4)$, and let $p>3$ be a prime not dividing $m$. For any positive integer $n$, we show that $$\\sum_{k=0}^{pn-1} \\frac{\\binom{2k}k}{m^k} \\equiv \\left(\\frac{\\Delta}p\\right) \\sum_{r=0}^{n-1}\\frac{\\binom{2r}r}{m^r} + \\frac{n}{m^{n-1}} \\binom{2n-1}{n-1} u_{p-(\\frac{\\Delta}p)}(m-2,1) \\pmod{p^2}.$$ In particular, for any prime $p>3$ and positive integer $n$, we have $$\\sum_{k=0}^{pn-1} \\frac{\\binom{2k}k}{2^k} \\equiv \\left(\\frac{-1}p\\right) \\sum_{r=0}^{n-1}\\frac{\\binom{2r}r}{2^r}\\pmod{p^2} \\ \\ \\mbox{and}\\ \\ \\sum_{k=0}^{pn-1} \\frac{\\binom{2k}k}{3^k} \\equiv \\left(\\frac{p}3\\right) \\sum_{r=0}^{n-1} \\frac{\\binom{2r}r}{3^r} \\pmod{p^2}.$$ We also pose some conjectures for further research.", "revisions": [ { "version": "v1", "updated": "2016-10-11T18:17:12.000Z" } ], "analyses": { "subjects": [ "11A07", "11B39", "11B65", "05A10", "11B75" ], "keywords": [ "lucas sequence", "positive integer", "supercongruences", "legendre symbol" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }